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Artificial neural networks (ANNs) were utilised to validate illicit drug classification in the profiling method used at “Institut de
cientifique” of the University of Lausanne (IPS). This method established links between samples using a combination of principal c
nalysis (PCA) and calculation of a correlation value between samples.
Heroin seizures sent to the IPS laboratory were analysed using gas chromatography (GC) to separate the major alkaloids pre

eroin. Statistical analysis was then performed on 3371 samples. Initially, PCA was performed as a preliminary screen to identi
f a similar chemical profile. A correlation value was then calculated for each sample previously identified with PCA. This correlat
as used to determine links between drug samples. These links were then recorded in an Ibase® database. From this database the notio

chemical class” arises, where samples with similar chemical profiles are grouped together. Currently, about 20 “chemical classes
dentified.

The normalised peak areas of six target compounds were then used to train an ANN to classify each sample into its appropriate
undred and sixty-eight samples were used as a training data set. Sixty samples were treated as blinds and 370 as non-linked
esults show that in 96% of cases the neural network attributed the seizure to the right “chemical class”.

The application of a neural network was found to be a useful tool to validate the classification of new drug seizures in existing
lasses. This tool should be increasingly used in such situations involving profile comparisons and classifications.
2005 Elsevier B.V. All rights reserved.
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. Introduction

A variety of analytical techniques have been described in
he literature for the analysis of heroin samples, particularly
as chromatography, which gives high resolution of target
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compounds as well as good sensitivity and reproducib
[1–6].

A simplified method was developed at the “Institut
Police Scientifique” (IPS) of the University of Lausanne
utilises GC–FID for the analysis of heroin samples seize
Switzerland in order to obtain rapid intelligence inform
tion. This method separates the major alkaloids, and
allows identification of the principal cutting agent[7–10].
This method requires simple sample preparation when
pared to the more common approach of GC analysis o
minor acidic and neutral impurities[11].
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oi:10.1016/j.talanta.2005.03.041



P. Esseiva et al. / Talanta 67 (2005) 360–367 361

In our study, a preliminary determination of chemical sim-
ilarity between samples was established via principal compo-
nent analysis (PCA). Correlation between samples was then
calculated by converting the sample data into vector repre-
sentations, and calculating the square of the cosine of the
angle between the vectors. This correlation value gave a mea-
sure of similarity between samples. When this correlation
value exceeded a certain threshold limit, defined in previous
research[7,8], the samples were considered to have a simi-
lar chemical profile. Multiple seizures with similar chemical
profiles were then considered to belong to a distinct chemi-
cal class. Membership of these classes infers a link between
samples and is useful for intelligence purposes.

This paper also demonstrates the use of a simulated arti-
ficial neural network (ANN) to recognise and validate links
between seized heroin samples, which were previously clas-
sified by the combination of PCA and calculation of the
correlation value. The ANN was trained using six target com-
pounds as input variables and the chemical class as the output
variable.

2. Data collection

Since 1992, the IPS has analysed samples of illicit drugs
f w of
i reet
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a

of the six target compounds’ normalised area was extracted
using specific macros written in Visual Basic® in Excel® soft-
ware. This chemical data was then transferred to a File Maker
Pro 6® database, along with other relevant investigation and
chemical information including seizure details, arresting offi-
cers’ details, number of samples in the seizure, purity, cutting
agents, the PCA scores for PC1 and PC2 (allowing the pos-
sibility to perform a preliminary selection) and the chemical
class.Fig. 1presents a screen capture of this database.

To date, this database comprises of 8000 heroin samples.
Three thousand three hundred and seventy-one samples from
the past 3 years were selected from this database for PCA
and similarity determination using the correlation value.

3. Results and discussion

3.1. Principal component analysis

PCA allows reduction of a data set by sequential linear
transformation of the data where often the first few principal
components (PC) retain much of the variability of the original
dataset[13,14]. PCA was performed on the peak areas of the
six target alkaloids: meconine, acetylcodeine, acetylthebaol,
6-monoacetylmorphine, papaverine and noscapine. The
p ed to
d zero
m med
w e
or strategic and operational purposes to control the flo
llicit drugs into Switzerland. The heroin samples were st
amples seized by different State Police. Each sample
nalysed using the GC–FID technique described in[7]. Each
Fig. 1. Screenshot of the File Maker Pro 6® database of a heroin
eak areas of each of these compounds were normalis
iacetylmorphine. The data was further normalised to
ean and unit variance prior to PCA. PCA was perfor
ith Unscrambler® 9.1 from CAMO. Computation of th
sample. The arrows illustrate the PC1 and PC2 information.
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Fig. 2. Scree plot of the eigenvalue vs. principal components.

PCs resulted in the first and second principal components
describing 42.7 and 31.7% of the variability in the original
observations, respectively, while both principal components
account for 74.4% of the total variance. Thus, the first
two PCs reduced the six-dimensional data set to a two-
dimensional data set, with an average of 25.6% loss of detail
(Fig. 2).

Fig. 3(a) shows a scatter plot of PC2 versus PC1 after
PCA of the data showing only the samples that belong to
distinct chemical classes[7]. Fig. 3(b) is a zoomed view
of the data cluster in lower quarter of the plot inFig. 3(a).
Visual inspection of these plots clearly shows clusters, each
corresponding to a chemical class. A 98.9% confidence
envelope is constructed around each of these clusters based
on three times the standard deviation of the PC scores within
each cluster. These envelopes are then used to determine
the chemical class of new seizures via computation of
the PC scores. Seizures falling within these envelopes are
then extracted and compared sample by sample with the
correlation function as described below and in references
[6,7].

It is necessary to perform this initial chemical class selec-
tion to remove any unrelated samples before further refine-
ment of link assignment using the correlation measurement,
which takes into consideration the complete variance of the
data set. Failure to do this results in unnecessary complica-
t g as
t mple
c
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The scalar product of the two vectors is:

�a · �b = ||�a|| ||�b|| cosθ (1)

If the expression of the scalar product according to the
vector components compared to an orthonormal base in space
is:

�a =




a1

a2

· · ·
an


 and �b =




b1

b2

· · ·
bn


 , then

�a · �b = a1b1 + a2b2 + · · · + anbn (2)

And the vector norm according to its components in space is:

||�a|| =
√

a2
1 + a2

2 + · · · + a2
n (3)

Then the square of the cosine of the angle between the two
vectors is:

cos2 θ = (�a · �b)
2

||�a||2||�b||2 ⇒ cos2 θ

= (a1b1 + a2b2 + · · · + anbn)2

(a2
1 + a2

2 + · · · + a2
n)(b2

1 + b2
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(4)
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ion of interpretation of the data and is also time-consumin
he calculation of the correlation value is a sample-by-sa
omparison.

.2. Calculation of inter-sample correlation

Consider two vectors as shown inFig. 4.
herefore, the correlation value,C, between the two vecto
s given by:

= 100

[
(a1b1 + a2b2 + · · · + anbn)2

(a2
1 + a2

2 + · · · + a2
n)(b2

1 + b2
2 + · · · + b2

n)

]
(5)

herea1,a2, . . .,an represent the values of the variables
or the matrixa, respectively, andb1, b2, . . ., bn represent th
alues of the variables 1–nfor the matrixb, respectively.

The samples were considered to be linked, i.e. the s
hen a correlation value greater than or equal to 99.8
btained. This threshold was determined in a previous s

7].

.3. Calculation of the discriminating power

It is essential to estimate the capability of the metho
iscriminate the samples. This is particularly important

he assessment the usefulness of the calculation of the co
ion value and its applicability for intelligence. This estim
as evaluated by calculation of the discriminating powe
election of samples analysed from the past 3 years (
amples).

Twenty chemical classes were identified in all of the 3
amples. These classes contained more than one seizu
ccounted for approximately 20% of the total samples. Fo
ther 80% of the samples, 238 unique chemical profiles

dentified, but no chemical classes were established be
he samples of these specific profiles belonged to a s
eizure. Therefore, 258 unique chemical profiles were
ified in the whole sample set.
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Fig. 3. PC score scatter plot of the samples making up the 20 chemical classes[7].

Fig. 4. Diagram of the angle between two vectors.

Assuming that the heroin samples are distributed among
the C1, C2, . . ., C258chemical profiles, the proportion in each
profile is given by:

p1 = c1

n

p2 = c2

n
...

p258 = c258

n

wherec1, c2, . . ., c258, are the number of samples belongings
to class C1, C2, . . ., C258, respectively, andn is the total
number of samples (in this case 3371).
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If the population is assumed to be infinite, the overall pro-
portion of combinations (̂Q), which results in a match, is
given by[15–17]:

Q̂ =
n∑

j=1

p2
j = 0.00377 (6)

If the population is assumed to be finite, as in our case, we
use this formula:

Q̂ =
∑k

j=1p̂
2
j − 1

n

1 − 1
n

(7)

And the result is:

Q̂ = 0.00351

Therefore, the probability of randomly finding two sam-
ples (belonging to the same profile selected within the
database population) using this method is 0.35%. Accord-
ingly, the probability of discrimination between two samples
with the selected method is 99.65%. So, a discriminating
power equal to 0.9965 means that on average greater than
99% of samples will be discriminated into its unique chemi-
cal class.

3.4. Management of chemical classes
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function that relates the input variables to the output vari-
ables, and can be used to make predictions where the output
is not known.

Artificial neural networks use a set of processing elements
(or nodes) loosely analogous to neurons in the brain. These
nodes are interconnected in a network in such a way that
allows patterns to be recognised in the data as the data is
introduced to it.

Neural networks have been dealt with extensively in many
publications[18–27]and a detailed description is beyond the
scope of this paper.

In brief, an ANN consists of neurons arranged in a layered
topology containing an input layer, a hidden layer and an
output layer which are all interconnected. When the ANN is
executed it attempts to identify patterns in the structure of
the data by a feed forward iterative process that continually
adjusts the weights of each of the neurons in the hidden and
output layer to minimise the error of the response surface. The
training of an ANN to find a suitable architecture to model
the data in question is performed via a heuristic process.

The following demonstrates the use of ANNs to identify
and classify heroin samples into their respective chemical
classes and/or chemical profiles based on the six compounds
normalised peak areas as inputs and the previously deter-
mined classes as outputs. Two types of network configu-
rations were tested: multi-layer perceptron and radial basis
f
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Determination of chemical classes is particularly us
hen combined with existing information gathered by
olice. Recording this information in a meaningful and u

ul way is crucial for the data to be utilised from a holis
ntelligence perspective.

Accordingly, each link was recorded in an Ibase® databas
s well as additional information including seizure det
uch as location, date, arresting officers, quantity, and
le details, such as cutting agents and purities. From

ntelligence perspective, Ibase® combined with Analys
otebook®, provides an easy way to interpret visual r

esentation of the chemical classes, allowing a clickable
own hierarchical interface as shown inFig. 5.

Without Ibase® and the Analyst Notebook® it would be
ifficult to visualise and manage these links. This is par

arly helpful to share this information with the police forc

.5. Artificial neural networks

Multi-layer perceptron (MLP) and radial basis functio
RBF) neural networks are supervised learning techni
hat infer a relationship between input values and outpu
es, which in this case are the normalised peak areas
eroin target compounds obtained from the GC–FID a
sis and the chemical classes, respectively. Therefore
ecessary to have previously determined the existen
hemical classes to train these networks, i.e. the class
ion performed by PCA and subsequent calculation of sa
imilarity. A properly trained network is able to model
unctions.
The MLP is one of the most popular network architect

Fig. 6) [18].
MLP networks have either threshold or sigmoidal act

ions functions. Its greatest strength is the use of non-l
olutions to solve problems. Two training algorithms are
rally used, back propagation and conjugate gradient de
ack propagation involves the calculation of the grad
ector of the error surface that points along the directio
teepest descent. Moving along the vector a short dis
ill decrease the error. Repeating this process and mo
long the vector in shorter distances will eventually fin
inimum. Conjugate gradient is a more sophisticated t

ng technique in which the line of descent directions of
rror response surface are selected to maintain the s
erivative of the error surface at zero. Conjugate grad

ypically requires fewer epochs than back propagation
sually converges to a lower minimum.

Radial basis function neural networks have an input l
f branching nodes, a hidden layer of radial units, each m

ng a Gaussian response surface, and an output layer (F
The activation of a hidden unit is determined by the

ance between the input vector and the prototype vector.
etwork uses a two-stage training procedure. In the first s

he parameters governing the basis functions (correspo
o the hidden units) are determined using relatively fast, u
ervised training methods. The second stage of training

nvolves the determination of the final-layer weights, wh
equires the solution of a linear problem, and therefore is
ast[19].
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Fig. 5. Ibase® and Analyst Notebook® screenshots detailing a linked heroin seizure.

Fig. 6. Architecture of a multilayer perceptron network. The network con-
sists of nodes and interconnecting arcs that form signal paths from left to
right through the network.

The neural network software used in this research was
Trajan Neural Networks, Version 6.0®. This software has
an algorithm designed to mimic the heuristic process. The
algorithm searches through the possible ANN architectures
and combinations by sequentially changing the number of
nodes in the hidden layer for both MLP and RBF networks.
Some network configurations are trained a number of times
because each training run starts from a random selection of
weights on the nodes of the neural network. Approximately
2000 artificial network configurations were tested to find the
most efficient network. Each test consisted of different train-
ing algorithms and/or network.

The data were broken into a number of groups to facilitate
the training of the networks, and to validate the outputs. These
were a training set and verification set, which consisted of
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Table 1
Best eight networks

Hidden Training
correct (%)

Training
wrong (%)

Training
unknown (%)

Test correct
(%)

Test wrong
(%)

Test unknown
(%)

False positive
(%)

MLP 6:35:20 98.68 0.00 1.32 88.14 3.39 8.47 1.88
MLP 6:23:20 98.95 0.26 0.79 91.53 1.69 6.78 51.08
MLP 6:22:20 97.63 0.53 1.84 88.14 3.39 8.47 35.48
MLP 6:20:20 97.63 0.79 1.58 72.88 3.39 23.73 19.35
RBF 6:120:20 97.38 0.40 2.20 83.05 16.95 0.00 5.01
RBF 6:116:20 96.78 0.40 2.81 84.74 15.26 0.00 5.30
RBF 6:126:20 96.58 0.40 3.01 83.05 1.69 15.25 5.60
RBF 6:121:20 97.38 0.60 2.00 96.61 1.69 1.69 4.12

Fig. 7. The traditional radial basis function network. Each ofn components
of the input vectorxi feeds forward to basis functions whose outputs are
linearly combined with weights (Wi ) into the network output.

330 and 168 samples, respectively, known to be members
of the 20 classes. The verification points ensured that the
network did not suffer from overlearning[28,29]. A further 60
samples known to be members from 1 of the 20 classes were
treated as test samples to ensure that the predictions of class
membership made by the ANN were accurate. In addition,
370 known non-linked samples (samples not belonging to the

Table 2
ANN topology and training methods for the best eight networks

Type Hidden Traininga

MLP 35 BP50, CG50, CG113b
MLP 23 BP50, CG50, CG96b
MLP 22 BP50, CG74b
MLP 20 BP50, CG75b
RBF 120 KM, KN, PI
RBF 116 KM, KN, PI
RBF 126 KM, KN, PI
RBF 121 SS, EX, PI

KM, K-means, center assignment; KN, K-nearest neighbour, deviation
assignment; PI, pseudo-invert, linear least squares optimisation; SS, sub-
sample; EX, explicit deviation assignment are training algorithms used by
the RBF network.

a Indicates how the network was trained, e.g. BP50, CG50, CG113b means
the network was trained initially with back propagation for 50 epochs, then
conjugated gradient for 50 epochs and then a conjugated gradient for 113
epochs.

20 chemical classes) were used to ensure the ANN did not
produce false positives.

Table 1 shows the performance of the best eight net-
works andTable 2 summarizes the architecture of these
networks.

As shown inTable 1, the neural network, which gave the
best performance, was an RBF consisting in 6 inputs (6 target

Fig. 8. Schematic of best performing network.
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compounds), 1 hidden layer (121 nodes) and 20 outputs (20
chemical classes). The schematic of this neural network is
presented inFig. 8.

This network correctly classified 97.4%, misclassified
0.6% and could not classify 2% of the training and verification
samples; 96.6% of the test samples were correctly classified,
while 1.7% were misclassified and 1.7% were unknown.
Most importantly, this network produced a false positive
rate of less than 4%. The utilisation of the ANN model is
acceptable in an operational perspective where the informa-
tion is initially dedicated to the police forces (supporting
the inquiry) and not for court purposes. The applicability
of the ANN can be extended to new chemical classes via
retraining.

4. Conclusions

PCA filtering followed by the calculation of the sample
correlation is an efficient and accurate method to identify
links between heroin samples. It overcame many of the
difficulties associated with the variability of a heroin
signature, which can vary slightly from one sample to the
next by repeated sampling from the same batch. Of the
1000 heroin samples analysed by GC–FID and selected
for the validation of the neural network architecture, 498
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